Synthesis of (1H)-3,4-Dihydropyrrolo[2,1-c][1,4]oxazin-1-one Derivatives

De Cai FU, Hong YU, Shou Fang ZHANG*

Shenyang Pharmaceutical University, Shenyang 110016

Abstract: In search of new anti-inflammatory and analgesic agents, (1H)-3,4-dihydro- pyrrolo [2,1-c][1,4]oxazin-1-one (**3**) and its acyl derivatives were designed and prepared. Compound **3** was prepared by treatment of methyl 1-(2-bromoethyl) pyrrole-2-carboxylate with silver oxide and its derivatives were obtained by Friedel-Craftes reaction. Nine of 6-acyl derivatives of compound **3** were prepared.

Keywords: (1H)-3,4-Dihydropyrrolo[2,1-c][1,4]oxazin-1-one, synthesis.

It has been found that some acyl derivatives of 1,2,3,4-tetrahydro-1-indolizin-1-one **1** and (*1H*)-3,4-dihydropyrrolo[1,2-a]pyrazin-1-one **2** show remarkable anti-inflammatory and analgesic activities^{1,2}. The interest in extending the study of structure-activity relationships and search of new potent anti-inflammatory and analgesic agents led us to design and synthesize (*1H*)-3,4-dihydropyrrolo[2,1-c][1,4]oxazin-1-one **3** derivatives.

A few examples of the pyrrolo[2,1-c][1,4]oxazine ring-system have been reported, but the synthesis of (1H)-3,4-dihydropyrrolo[2,1-c][1,4]oxazin-1-one **3** has not been found in literature. Irwin has reported the synthesis of some 3-phenyl derivatives of the compound **3** by the cyclization of 1-(2-hydroxy-2-phenylethyl)pyrrole-2-carboxilic acid, which was prepared from potassium methyl pyrrole-2-carboxylate and styrene oxide (**Scheme 1**)³.

With this synthetic scheme, started from ethylene oxide instead of styrene oxide, Irwin was not successful in the synthesis of compound 3 itself³.

^{*}E-mail: fangrui@mail.sy. ln.cn

De Cai FU et al.

Scheme 1

We designed a new synthetic scheme, and compound **3** was successfully synthesized. Methyl pyrrole-2-carboxylate was prepared by Bailey's procedure⁴. When it reacted with excess 1,2-dibromoethane, methyl 1-(2-bromoethyl)pyrrole-2-carboxylate **5** was obtained with high yield. Treated compound **5** with silver oxide in 25% methanol solution, compound **3** was successfully obtained (**Scheme 2**). Friedel-Craftes acylation of **3** with acid chlorides in 1,2-dichloroethane afforded 6-acyl-3,4-dihydropyrrolo- [2,1-c][1,4]oxazin-1-ones **4**.

Scheme 2

a: BrCH₂CH₂Br, (n-Bu)₄N⁺Br⁻/ NaOH b: Ag₂O c: RCOCl

Experimental

Melting points were determined with capillary method, and the thermometer was uncorrected. ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker ARX-300 spectrometer. MS was measured with GCMSQP-1000 instrument.

Methyl 1-(2-bromoethyl)pyrrole-2-carboxylate 5

A mixture of 3.3 g (26.4 mmol) methyl pyrrole-2-carboxylate, 3 mL 50% aqueous sodium hydroxide and 0.2 g tetrabutylammonium bromide in 20 mL 1,2-dibromoethane was stirred at room temperature for 5 h. The reaction mixture was washed with water (15 mL \times 3), and the organic layer was dried over MgSO₄. After recovering the excess 1,2-dibromoethane by vacuum distillation, crude product was obtained as a sticky oil. It was purified by column chromatography on silica-gel; eluted with petroleum ether/ethyl acetate (6:1) 5.8 g methyl 1-(2-bromoethyl)pyrrole-2-carboxylate **5** was obtained as an oil, bp 122-124°C/10 mm (lit.⁵ 131-133°C /15 mm), yield 94%.

Synthesis of (1H)-3,4-Dihydropyrrolo[2,1-c][1,4]oxazin-1-one 1053 Derivatives

(1H)-3,4-Dihydropyrrolo[2,1-c][1,4]oxazin-1-one 3

A mixture of 2.0 g (8.6 mmol) compound **5** and 1.0 g (4.3 mmol) silver oxide in 25 mL 25% methanol solution was stirred at 60~70°C for 6 h. The mixture was cooled and filtered. The filtrate was extracted with dichloromethane (20 mL × 3). The combined extracts were washed with water, dried over Na₂SO₄. After removing the solvent on the rotary evaporator, a pale-yellow solid was afforded. The crude product was recrystallized from petroleum ether/ethyl acetate (1:3). 0.7 g of compound **3** was obtained as a white needle crystal, mp 62~63°C, yield 60%. MS(*m*/*z*) : 137(M⁺, 100%), 107, 79, 52, 39, 27. ¹H-NMR (δ , ppm, CDCl₃): 4.21 (t, 2H, J=5.25Hz, H-4), 4.61 (t, 2H, J=5.25Hz, H-3), 6.30 (dd, 1H, J_{6,7}=2.53 Hz, J_{7,8}=3.89 Hz, H-7), 6.89 (m, 1H, H-6), 7.11 (dd, 1H, J_{6,8}=1.32 Hz, J_{7,8}=3.93 Hz, H-8). ¹³C-NMR (δ , ppm, CDCl₃): 4.3.1, 66.0, 110.7, 117.5, 119.4, 124.7, 158.6.

General procedure for the synthesis of compound 4

A mixture of 1.0 g (7.3 mmol) of compound **3** and 3.7 g (28 mmol) anhydrous aluminum chloride in 25 mL 1,2-dichloroethane was stirred at 0°C for 30 min. And then a solution 9.5 mmol acid chloride in 10 mL 1,2-dichloroethane was added dropwise at $0 \sim 5^{\circ}$ C. The reaction mixture was stirred at $0 \sim 5^{\circ}$ C for 6 h, and then at room temperature for 2 h. The mixture was poured into 30 g ice-water containing 5 mL concentrated hydrochloric acid. The organic layer was separated, and the water layer was extracted with 1,2-dichloroethane (15 mL × 2). Combined the organic phases, dried over Na₂SO₄, and the solvent was removed by vacuum distillation. The solid residue was crystallized from ethyl acetate or petroleum ether/ethyl acetate, the 6-acyl-(*1H*)-3,4-dihydropyrrolo-[2,1-c][1,4]oxazin-1-one **4** was obtained. All the compounds **4** (**4a-4i**) are white crystals. The structures and some physical data are presented in the **Table**.

Pharmacological tests

The anti-inflammatory activities were evaluated by the xylene-induced ear edema on mice, and the analgesic activities were evaluated by acetic acid-induced writhing method. The primary results showed some of compounds **4** had some anti-inflammatory and/or analgesic activities, but they were all lower than the activities of ibuprofen.

De Cai FU et al.

Compd.	R	mp (°C)	¹ H-NMR(δ, ppm, CDCl ₃)
	$\langle \rangle$	172-17	4.30 (t, J=5.3Hz, 2H), 4.68 (t, J=5.3Hz, 2H), 7.46-7.56
4 a		2	(m, 5H), 7.83 -7.85 (m, 2H).
		3	
4b	CH3-CH3-	176-178	2.44 (s, 3H), 4.30 (t, J=5.3Hz, 2H), 4.66 (t, J=5.3Hz, 2H),
			7.30 (m, 2H), 7.48-7.52 (m, 2H), 7.74-7.77 (m, 2H).
4c	a-	165-168	4.31 (t, J=5.3Hz), 4.68 (t, J=5.3Hz, 2H), 7.44-7.53 (m, 4H),
			7.80-7.82 (m, 2H).
4 d	CH-0	146-149	3.90 (s, 3H), 4.30 (t, J=5.3Hz, 2H), 4.67 (t, J=5.3Hz, 2H),
4u			6.96- 6.99 (m, 2H), 7.50-7.55 (m, 2H), 7.81 -7.90 (m, 2H).
	q		4 28 (t 1=5 3Hz 2H) 4 66 (t 2H) 7 30 (m 1H) 7 35
4 e	a	136-138	(m, 2H), 7.43 (m, 1H), 7.49 (m, 1H).
4f	CI CI	152-154	4.30 (t, J=5.3Hz, 2H), 4.66 (t, J=5.3Hz, 2H), 7.32-7.48 (m,
	\checkmark		6Н).
4g	CH2-	174-176	4.06 ($s,2H$), 4.23 ($t,J{=}5.3\mathrm{Hz},2\mathrm{H}$), 4.62 ($t,J{=}5.3\mathrm{Hz},2\mathrm{H}$),
			7.28-7.30 (m, 5H), 7.46 (m,1H), 7.50 (m, 1H).
4h	F-	180-182	4.32 (t, J=5.3Hz, 2H), 4.68 (t, J=5.3Hz, 2H), 7.14-7.20 (m,
			2H), 7.47 (m, 1H), 7.53 (m, 1H), 7.87-7.91 (m. 2H).
4 i		156-158	2.46 (s, 3H), 4.01 (s, 2H), 4.23 (t, J=5.3Hz, 2H), 4.62 (t,
-11	CH35-CH2-		J=5.3Hz, 2H), 7.20 (m, 4H), 7.45 (m, 1H), 7.50 (m, 1H).

 Table
 The structure and physical data of compound 4

References

- J.Y. Liu, S.F. Zhang, *Chin. Chem. Lett.*, **1997**, 8, 577.
 J.Y. Pang, G. Shun, S.F. Zhang, *et al.*, *Chinese J. of Med. Chem.*, **2002**, *13*, in press.
 Irwin W.J., Wheeler D.L., *Tetrahydron*, **1972**, *28*, 1113.
 D.M. Bailey, R.E. Johnson, *et al.*, *Org. Synth.*, **1971**, *51*, 100.
 Margaret A. Brimble, Mark T. Brimble, *et al.*, *Aust. J. Chem.*, **1988**, *41*, 1583.

Received 8 February, 2002